When accomplished STEM teachers develop models, analogies, and examples they may do one or more of the following:

_ Model what a "good" justification, evaluation, or revision of a model, argument, or idea looks/sounds		
like (T39) ❖		
Model what constitutes an evidence-based explanation in STEM disciplines (T40)		
Use organizational routines or activity structures with respect to specific tasks (T145)		
Call out their own mistakes and model their use as learning opportunities (T43)		
Demonstrate and reinforce the use of shared knowledge and terms (e.g., ground a discussion in		
shared knowledge and terms) (T44)		
Explicitly emphasize and value conceptual understanding and reasoning (T46)		
Provide scientific or mathematical expertise, background, or vocabulary only when no other student		
can do so (T81) Δ		
Create and protect space for students to construct and/or reconstruct their own understandings		
(T108) Δ		
Present multiple pieces of student thinking in order to engage students in discussions about		
similarities and differences between/among them (T113) Δ		
Provide consistent, diverse opportunities for students to draw conclusions (T115) Δ		
Restate or summarize student ideas, as appropriate (T121)		
Ask students to synthesize ideas (T105)		

In these classrooms we expect to see a diverse range of students...

Analyzing and interpreting data effectively (S1)
Asking questions of the teacher and other students to clarify their own thinking (S11) $lacktriangle$ Δ
Being willing to put ideas on the table regardless of whether they are correct or fleshed-out (S62)
◆ △ *
Communicating information clearly (S2)
Demonstrating genuine curiosity in new ideas (S46)
Explaining others' models, arguments, and ideas (S27)
Making and defending all evaluative claims with mathematical or scientific evidence (S6) 🌣

Evidence Checklist

Core Practice: *Use STEM Content Knowledge Strategically*

When accomplished STEM teachers develop models, analogies, and examples they may do one or more of the following:

ALWAYS		STRATEGICALLY	
More Straightforward: Use organizational routines or activity structures with respect to specific tasks (T145)	More Challenging: Provide scientific or mathematical expertise, background, or vocabulary only when no other student can do so (T81) \(\Lambda \)	More Straightforward: Model what constitutes an evidence-based explanation in STEM disciplines (T40) Model what a "good" justification,	More Challenging: Restate or summarize student ideas, as appropriate (T121) Create and protect space for
Ask students to synthesize ideas (T105)	can do so (T81) Δ Call out their own mistakes and model their use as learning opportunities (T43)		protect space for students to construct and/or reconstruct their own understandings

In these classrooms we expect to see a diverse range of students...

Analyzing and interpreting data effectively (S1)
Asking questions of the teacher and other students to clarify their own thinking (S11) $lacktriangle$ Δ
Being willing to put ideas on the table regardless of whether they are correct or fleshed-out (S62)
◇ △ *
Communicating information clearly (S2)
Demonstrating genuine curiosity in new ideas (S46)
Explaining others' models, arguments, and ideas (S27)
Making and defending all evaluative claims with mathematical or scientific evidence (S6) 😂